Identification of Key Processes that Control Tumor Necrosis Factor Availability in a Tuberculosis Granuloma
نویسندگان
چکیده
Tuberculosis (TB) granulomas are organized collections of immune cells comprised of macrophages, lymphocytes and other cells that form in the lung as a result of immune response to Mycobacterium tuberculosis (Mtb) infection. Formation and maintenance of granulomas are essential for control of Mtb infection and are regulated in part by a pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF). To characterize mechanisms that control TNF availability within a TB granuloma, we developed a multi-scale two compartment partial differential equation model that describes a granuloma as a collection of immune cells forming concentric layers and includes TNF/TNF receptor binding and trafficking processes. We used the results of sensitivity analysis as a tool to identify experiments to measure critical model parameters in an artificial experimental model of a TB granuloma induced in the lungs of mice following injection of mycobacterial antigen-coated beads. Using our model, we then demonstrated that the organization of immune cells within a TB granuloma as well as TNF/TNF receptor binding and intracellular trafficking are two important factors that control TNF availability and may spatially coordinate TNF-induced immunological functions within a granuloma. Further, we showed that the neutralization power of TNF-neutralizing drugs depends on their TNF binding characteristics, including TNF binding kinetics, ability to bind to membrane-bound TNF and TNF binding stoichiometry. To further elucidate the role of TNF in the process of granuloma development, our modeling and experimental findings on TNF-associated molecular scale aspects of the granuloma can be incorporated into larger scale models describing the immune response to TB infection. Ultimately, these modeling and experimental results can help identify new strategies for TB disease control/therapy.
منابع مشابه
Complete ablation of tumor necrosis factor decreases the production of IgA, IgG, and IgM in experimental central nervous system tuberculosis
Objective(s): This study aimed to explore the contribution of tumor necrosis factor (TNF) in the recruitment of B-cell and secretion of immunoglobulins (Igs) during cerebral tuberculosis (TB).Materials and Methods: In this work, the contributing role of TNF in regulating Ig secretions was investigated by comparing wild type TNF (TNFf/f),...
متن کاملMulti-Scale Modeling Predicts a Balance of Tumor Necrosis Factor-α and Interleukin-10 Controls the Granuloma Environment during Mycobacterium tuberculosis Infection
Interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) are key anti- and pro-inflammatory mediators elicited during the host immune response to Mycobacterium tuberculosis (Mtb). Understanding the opposing effects of these mediators is difficult due to the complexity of processes acting across different spatial (molecular, cellular, and tissue) and temporal (seconds to years) scales. We take...
متن کاملAssociation of VNTR polymorphism of tumor necrosis factor receptor 2 (TNFRSF1B) with pulmonary tuberculosis
This study was designed to find out the impact of the variable number of tandem repeats (VNTR) of the tumor necrosis factor receptor 2 (TNFRSF1B) on pulmonary tuberculosis (PTB) risk in an Iranian population. This case-control study was done on 159 PTB patients and 158 healthy subjects. Bi-allelic TNFRSF1B VNTR was genotyped by polymerase chain reaction. Logistic regression analysis revealed no...
متن کاملNF-κB Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis
The NF-κB signaling pathway is central to the body's response to many pathogens. Mathematical models based on cell culture experiments have identified important molecular mechanisms controlling the dynamics of NF-κB signaling, but the dynamics of this pathway have never been studied in the context of an infection in a host. Here, we incorporate these dynamics into a virtual infection setting. W...
متن کاملTumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death.
Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, al...
متن کامل